博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
<知识库的构建> 5-3 马尔科夫逻辑 Markov logic
阅读量:5968 次
发布时间:2019-06-19

本文共 1537 字,大约阅读时间需要 5 分钟。

引自Fabian Suchanek的讲义。

 

总结:马尔科夫你需要知道这么几个点:

第一个是要知道如何形成马尔科夫随机场的条件,就是当有多个随机变量满足:Xi只由他的邻居决定,至于邻居是可以形成无向图,邻居是点,邻居和邻居的连线是边。

第二个要清楚的是Hammersley-Clifford-Theorem形成的条件,很容易,是说马尔科夫随机场里面的P都大于0的时候,这个也叫作矢量化,在CRF里面有提到,也就是当P大于0的时候,x也就是一条一条的rules,当他们成立的时候的概率等于势函数的乘积。

第三个要知道MRF和rules有什么关系,为什么要在这里运用MRF,MRF是可以计算所有KB的权重不同的时候的概率,概率是怎么算的呢,在第二条我讲过了,就是当rules成立的时候势函数的乘积,但是在计算KB的总权重时,并不是每个rules都会成立,我们根据式子,可以知道P是是函数的乘积,势函数是e的权重次方,e是单调递增函数,所以权重越大,那么势函数越大,那么P就越大,当权重最大的时候,也就是rules都成立的时候,就是KB权重最大的时候。

 

 

下图是一个表格,w代表possible world,X代表rules,例如hasSpouse之类的,F/T是随机身体成的答案,F代表对应的X不成立反之为T,P代表着出现该possible world的概率。

 

 

马尔科夫随机场MRF:由一系列随机变量组成,且它们满足:

 

N(Xi) 表示Xi的邻居,也就是能决定Xi的东西

整个式子表示Xi只被它的邻居决定

 

下图为一个马尔科夫随机场

 

从图中我们可以看出X123是互相依赖的

X45是互相依赖的,因为4出现5也出现,4不出现5也不出现,这个道理对5也成立。

 

邻居Neighbors:互相依赖的就可以成为邻居,邻居之间可以形成无向图,也就是整个表格的cliques

表示邻居:N(X1) = {X2,X3} etc…

表示cliques:C1 = {X1,X2,X3}, C2 = {X1,X2,X3}

最大的clique:cliques中边最多的,此处是C1

 

Hammersley-Clifford-Theorem:若MRF中每个P都大于0,那么

 

 

势函数:根据表格中的rules是否成立来计算

例如:

 

若条件成立得到的的是权重,那么势函数的结果是e的权重次方

 

我们有这些带权重的rules,我们想计算KB的各种possibleword出现的概率分布:可以使用MRF

 

我们设is(Ron, Immature)为X1,likes(H,Ron)为X2, type(H,sor)为X3,我们可得:

 

 

第一个式子是指若x1成立,那么得到权重10,若不成立则得到权重0,所以对应的势函数结果就是e的10次方或者是e的0次方。

最终P就是这三种情况的乘积。

 

MRF与MAXSAT:当W最大时得到的P就是KB权重最大的概率

P是势函数的成绩,势函数是e的权重次方,e是单调递增函数,所以权重越大那么势函数越大,那么P越大,所以要使P变大,最根本上是要让w变大,即使用梯度上升的方法使W变大。

公式推理:

使下面的式子最大:

 

即:找到使此式子值最大的x

所以得到P至于W有关,所以尽量让w大一些。

 

正则化Normalization:因为要让P在0和1之间,所以把势函数的乘积除以了Z

 

马尔科夫逻辑网Markov Logic Network:一些带权重的rules形成马尔科夫逻辑网,factor是势函数,当rules为positive时即成立时,则能得到势函数的值是e的权重次方,否则是e的0次方。

转载于:https://www.cnblogs.com/mengzizhao/p/8381982.html

你可能感兴趣的文章
解析solidity的event log
查看>>
[转发] 【GRT安智网】HTC安致手机ROM国内首个中文定制教程goapk首发[最新厨房V0......
查看>>
try catch 之后是否会继续执行
查看>>
vim 配置svn
查看>>
《重构-改善既有代码设计》读书笔记-重构篇
查看>>
测试第三方代码
查看>>
RabbitMQ接触(二)
查看>>
Springboot-添加对jsp支持
查看>>
数据库设计中的14个技巧
查看>>
替换k个字符后最长重复子串
查看>>
讲解sed用法入门帖子
查看>>
Java异常学习心得
查看>>
Scala学习之类和属性篇(一):定义类的主构造方法
查看>>
使用阿里云CentOS安装LAMP时,安装PHP扩展需要注意的事情
查看>>
Python 浮点数运算
查看>>
iOS官方Sample大全
查看>>
MongoDB replSet
查看>>
PHP sprintf() 函数
查看>>
Linux 内核已支持苹果
查看>>
屏幕分辨率的问题
查看>>